243rd ACS National Meeting, San Diego, CA

Document ID: 20933

Program Area: CATL: Division of Catalysis Science and Technology

Symposium Title: (CATL002) Molecular Insights Towards Novel Catalysts

INSTITUTIONS

1. Stevens Institute of Technology, Department of Chemical Engineering and Materials Science, Hoboken, New Jersey, 07030, United States

2. Current address: Huntsman Advanced Technology Center, 8600 Gosling Road, The Woodlands, Texas, 77381, United States

3. Princeton University, Department of Chemical and Biological Engineering, Princeton, New Jersey, 08544, United States

AUTHORS

1. Jie Gao¹,

- 2. Haibo Zhao²,
- 3. Xiaofang Yang³,

4. <u>Simon G Podkolzin¹</u>, Stevens Institute of Technology, Department of Chemical Engineering and Materials Science, Castle Point on Hudson, Hoboken, New Jersey, 07030, United States , 201-216-8074, Simon.Podkolzin@Stevens.edu

5. Bruce E Koel^3 ,

Reason for Abstract Submission: I am contributing this paper in response to the Call for Papers.

Invitation from: No response indicated

Email of Inviter: No response indicated

Criteria are met: Are met by at least one author

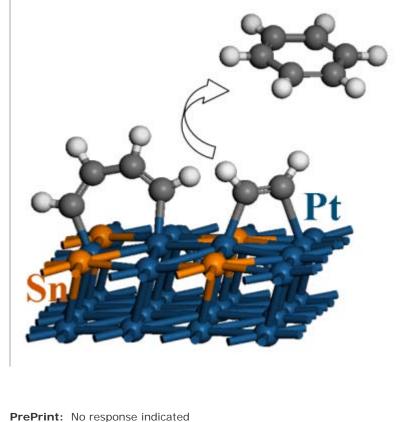
Presenting author will register: Yes

Abstract will be withdrawn if author cannot attend: Yes, I agree

Abstract submitted only once: Yes, I agree

Equipment Needs: No response indicated

Comments to Organizers: No response indicated


Preferred Presentation Method: Oral Preferred

Should this Paper be Considered for a SCI-MIX? No response indicated

Student Type: No response indicated

Title: Experimental spectroscopic and computational DFT studies of the mechanism of acetylene conversion to benzene on Pt-Sn alloys

Abstract Body: Conversion of regular and deuterated acetylene into benzene was studied on Pt(111) and two ordered surface alloys: $Pt_3Sn/Pt(111)$ and $Pt_2Sn/Pt(111)$ with HREELS and TPD at 90-1000 K. No benzene formation was detected on Pt(111). On alloys, formed benzene readily desorbs, and the amount of produced benzene is higher over the Pt_2Sn alloy with a higher Sn concentration. DFT calculations were performed in order to assign experimental vibrational frequencies and develop a molecular reaction mechanism for benzene formation. The results suggest that acetylene forms a cyclic C_4H_4 dimer on the Pt-Sn alloys. This C_4H_4 intermediate is predicted to produce benzene by reacting with an additional surface acetylene. The destabilizing effect of Sn alloying is more significant for acetylene than for the C_4H_4 intermediate, and as a result, the reaction of C_4H_4 formation changes from being endothermic on pure Pt to being exothermic, *i.e.* energetically favorable, on the Pt-Sn alloys.

http://abstracts.acs.org/chem/243...